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Abstract

The signal readout of a magnetoresistive "MR# transducer is very sensitive to temperature[ To study the thermal
e}ects on the MR transducer when the slider ~ies close to the surface of the disk\ we introduce a heat transfer model
with discontinuous boundary conditions in the thin slider:disk air bearing and solve it numerically[ It is found that the
heat ~ux is primarily due to heat conduction\ which transfers heat from the slider to the air bearing when the slider has
a higher surface temperature than the disk\ and viscous dissipation\ which transfers heat from the air bearing to the
slider[ Whether an air bearing acts as a {coolant| or {heater| depends on which part\ the heat conduction or viscous
dissipation\ dominates the heat transfer[ Since the magnitude of viscous dissipation is relatively small\ the {heating| e}ect
often plays a weaker role unless the temperature di}erence between the slider and disk is very nearly equal to zero[
Simulation results show that the e}ect of the heat conduction increases with a decrease in the ~ying height\ but the e}ect
of the viscous dissipation decreases with a decrease in the ~ying height[ In other words\ the {cooling| e}ect increases
with a decrease in the ~ying height[ Þ 0887 Elsevier Science Ltd[ All rights reserved[
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Nomenclature

cp speci_c heat at constant pressure
cv speci_c heat at constant volume
h air bearing space
k thermal conductivity of the air
Kn Knudsen number
L length of the slider
M Mach number
p air bearing pressure
P9 ambient air pressure
p� non!dimensional air bearing pressure\ p� � p:P9

Pr Prandtl number
q heat ~ux between the slider surface and the air bearing
R gas constant
Re Reynolds number
T air bearing temperature
Ts temperature of the slider surface

� Corresponding author
0 Current address] Iomega Corporation\ 799 Tasman Drive\

Milpitas\ CA 64924\ U[S[A[

Td temperature of the disk surface
T9 ambient air temperature
DT9 temperature di}erence between the slider and disk
surfaces
T� non!dimensional air bearing temperature\ T� �
T:DT9

u\ v\ w velocity components of the air bearing
U linear velocity of the disk at the slider location
u�\ v�\ w� non!dimensional velocity components\
u� � u:U\ v� � v:U\ w� � w:U
x\ y\ z coordinates in the air bearing
x�\ y�\ z� non!dimensional coordinates in the air bear!
ing\ x� � x:L\ y� � y:L\ z� � z:h[

Greek symbols
a thermal di}usivity of the air
g ratio of the speci_c heats\ g � cp:cv

l mean free path of the air
m viscosity of the air
n dynamic viscosity of the air
sM momentum accommodation coe.cient
sT thermal accommodation coe.cient[
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0[ Introduction

The magnetoresistive "MR# transducer was developed
using the principle that its resistance varies with the vari!
ation of the surrounding magnetic _eld ð0Ł[ Since its
resistance is also temperature dependent\ any tem!
perature change will result in a noise in the MR readout
signal[ One such phenomenon\ which is referred to as
thermal asperities\ is induced by the ~ash temperature
rise when the slider contacts the disk near the MR trans!
ducer[ A similar phenomenon was observed when a slider
~ies very close to the disk surface without contact ð1Ł[
Experimental results showed that when a slider carrying
a MR transducer ~ies over an asperity that disturbs the
steady ~ying condition\ the readout signal ~uctuates with
the ~uctuation of the ~ying height of the slider[ They
concluded that the air bearing has a cooling e}ect on the
MR transducer\ which makes a major contribution to
the ~uctuation of the readout signal[ In this paper\ we
conduct a theoretical study of the heat transfer between
a slider and the air bearing to determine the mechanism
of the {cooling| e}ect of the air bearing[

One important issue in solving the heat transfer prob!
lem between a slider and the air bearing is that the tra!
ditional lubrication theory\ which is based on the con!
tinuum assumption\ is not valid when the air bearing is
very thin[ For example\ the ~ying height of a typical MR
head is around 49 nm in today|s hard disk drive[ The
Knudsen number Kn � l:h\ where l is mean free path of
the air and h is the spacing of the slider:disk interface\ is
between 9[91 and 0 under this condition[ The air ~ow
with such a Knudsen number is regarded as within the
slip and transition regimes\ and far out of the continuum
region of Kn ³ 9[90 ð2Ł[ One approach to solving heat
transfer problems in these regimes is to apply the
MaxwellÐBoltzman equation of the kinetic theory of
gases[ However\ solving a complete MaxwellÐBoltzman
equation requires very much computation time[ Another
approach is to assume that the continuum governing
equations such as the NavierÐStokes "NÐS# equation and
energy equation are still usable[ As a modi_cation\ the
discontinuous boundary conditions are applied ð3Ł[ These
methods have been used previously in solving for the
velocity distribution in an air bearing by several
researchers ð4Ð6Ł[

Another important issue in solving heat transfer prob!
lems under these conditions is that the continuity equa!
tion\ momentum equation and energy equation need to
be solved simultaneously\ because the physical properties
of the air depend on the temperature\ which usually
makes the problem more complicated\ and also requires
more computation time in the numerical analysis[ A sim!
ple approach is to assume that the properties are constant
if the temperature variation is not too great\ so we can
evaluate the properties at a certain reference temperature\
say the average temperature of the two surfaces[ With

Fig[ 0[ Slider:disk system and coordinates[

such an approximation\ the momentum and energy equa!
tions can be decoupled for solution[ Since the tem!
perature di}erence between the slider and disk surfaces
is expected to be very small\ it is reasonable to apply a
constant property assumption in an air bearing[ Thus we
can solve the momentum and energy equations separ!
ately[

In this paper\ we _rst simplify the NÐS and energy
equations by dimensional analysis[ Then we solve the
reduced NÐS equation with slip boundary conditions to
get the velocity distribution and solve the energy equation
with jump boundary condition to get the temperature
distribution in the air bearing[ Using Fourier|s law\ we
obtain an expression for heat ~ux between the slider
and air bearing[ A computer program is implemented to
simulate the heat ~ux for several cases[ The slider:disk
system as well as the related coordinate system used in
the analysis are shown in Fig[ 0[

1[ Governing equations in the air bearing

In the following analysis we focus on the steady case\
so the time dependent terms in the related equations
disappear[ Using dimensional analysis\ we reduce these
equations to simpler forms[

1[0[ NavierÐStokes "NÐS# equation

The simpli_cation of the NÐS equation in an air bear!
ing has been performed by many researchers ð7Ł[ Here we
only list the simpli_ed results and do not present the
detailed derivation]
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where u\ v are velocities in the x! and y!directions\ p is
the pressure and m the viscosity of the air[ For sim!
pli_cation\ we assume m is uniform in the air bearing[ The
velocity component w in the z!direction is approximated
to be zero[ Clearly\ the pressure p remains constant across
the thickness of the air bearing[

1[1[ Ener`y equation

As in the NÐS equation\ the energy equation can also
be simpli_ed by using dimensional analysis in the air
bearing[ Since the magnitudes =1:1x= ½ =1:1y= ð =1:1z=
and the air velocity w in the z!direction is approximately
zero in a lubrication problem\ we neglect the relatively
small terms and write the energy equation as]
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where r is the density\ cp is the speci_c heat\ k is the
thermal conductivity\ assumed uniform in the air bearing\
and T is the temperature of the air[

As in simplifying the NÐS equation\ we use the charac!
teristics of the air bearing to reduce the energy equation
"1a#[ Let|s _rst de_ne the non!dimensional variables]
u� � u:U\ v� � v:U\ T� �T:DT9\ p� � p:DP9\ x� �
x:L\y� � y:L\ z� � z:h\ where U is the disk velocity\ DT9

is the temperature di}erence between the slider and disk
surfaces and P9 is the reference pressure "say the ambient
air pressure#\ L is the length of the slider and h is the
thickness of the air bearing[ Substituting these variables
into equation "1a# we obtain the following expression]
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where a � k:rcp is the thermal di}usivity[
For a typical head:disk air bearing\ we can take r ½ 0

kg m−2\ cp ½ 092 J kg−0 K−0\ k ½ 9[92 W m−0 K−0\
m ½ 09−4 kg m−0 s−0\ U ½ 04 m s−0\ L ½ 1 mm\
h ½ 49 nm\ DT9 ½ 09 K\ and P9 ½ 094 kg m−0 s−1[
Thus Uh1:aL ½ Pr Re"h:L# ½ 09−6\ "P9Uh1#:"kLDT9# ½
"PrReM1#"T9:DT9#"h:L#"p9:rU1# ½09−4\andmU1:kDT9 ½
Pr M1"T9:DT9# ½ 09−1\ where Pr is the Prandtl number
de_ned by Pr � mcp:k\ Re is the Reynolds number de_ned
as Re � Uh:v and M is the mach number de_ned by
U:"gRT9#0:1\ and T9 is a reference temperature "say the
ambient air temperature#[ Therefore\ compared with the
conduction term in equation "1b#\ the non!linear terms

on the LHS are small and can be neglected[ The energy
equation is thus reduced to]
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Generally\ the viscous dissipation term is smaller in mag!
nitude than the conduction term in equation "1c#[ But\
when the temperature di}erence between the slider and
disk surfaces is close or equal to zero\ the warming e}ect
of the viscous dissipation is not negligible[ Therefore\ we
keep it in equation "1c# for future analysis[

Note that equation "1c# is valid only when
PrRe"h:L# ð 0\ "PrReM1#"T9:DT9#"h:L#"p9:rU1# ð 0
and h:L ð 0[ Fortunately\ these conditions are usually
satis_ed in a slider:disk air bearing[

1[2[ Boundary conditions

We assume that the disk has a non!zero velocity U in
the x!direction and zero velocity V in the y!direction\
which is the case of a slider ~ying at a middle radius of
the disk[ As for the temperature\ considering that the
disk has much larger size than the air bearing and rotates
with high speed\ we assume that it has a constant and
uniform surface temperature\ the same as the ambient
air[ We also assume that the slider|s surface temperature
is uniform[ Introducing the slip condition for the velocity
and the jump condition for the temperature at the bound!
aries of the air bearing ð1\ 3Ł\ we can write the boundary
conditions for velocity and temperature as]
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where sM is the momentum accommodation coe.cient
and sT is the thermal accommodation coe.cient\ g is the
ratio of cp to cv which are speci_c heats at\ respectively\
constant pressure and constant volume\ Ts and Td are\
respectively\ the slider surface temperature and disk sur!
face temperature[ For convenience\ we write
a �"1−sM#:sM and b � 1"1−sT#g:sT"g¦0#Pr in the fol!
lowing analysis[
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2[ Heat transfer between the slider and the air bearing

To obtain the heat transfer in the air bearing\ we need
to know its temperature distribution[ This requires us to
solve the NÐS equation and the energy equation[ Because
of the approximation of constant properties of the air\
we can decouple the NÐS and the energy equations and
solve them separately[

2[0[ Velocity distribution

The velocity distribution can be obtained by inte!
grating the reduced NÐS equations "0a#Ð"0b# with bound!
ary conditions "2a#Ð"2d#[ The procedure is straight!
forward and was done by other researchers ð4\ 8Ł[ Here
we list the results of the solution]

u � −
0
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1x
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z¦al

h¦1al1\ "3a#

v � −
0
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1y

"alh¦hz−z1#[ "3b#

On the RHS of equation "3a#\ the _rst term is the
contribution of the Poiseuille ~ow and the second term
is the contribution of the Couette ~ow\ while in "3b# only
the Poiseuille ~ow result is involved because we take the
y!component of disk velocity V � 9[ Clearly\ these results
are not complete because we still do not know the pres!
sure gradient in the x! and y!directions[ To _nish the
solution we need to solve the Reynolds equation\ which
requires the integration of the continuity equation ð4\
6Ł\ to obtain the pressure distribution _rst[ To get the
solution\ a numerical method is required ð09\ 00Ł[

2[1[ Temperature distribution

We substitute the velocity solutions "3a# and "3b# into
the energy equation "1c# and integrate it to obtain the
temperature distribution in the air bearing]
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As in the velocity solutions\ the temperature T also con!
sists of contributions from the Poiseuille and Couette

~ow[ In addition\ extra terms exist\ which are the com!
bined e}ects of both the ~ows[

2[2[ Heat transfer

Using Fourier|s Law q � −k1T:1z at z � h and the
temperature solution "4#\ we can obtain the heat transfer
into the slider as follows]
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We can also write the heat transfer equation "5a# in a
non!dimensional form as]
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3[ Analysis and discussion

In this section\ we study the heat transfer for two
special cases\ Couette ~ow and Poiseuille ~ow between
two parallel plates\ in order to reveal the physical mean!
ing of each term in the heat ~ux equation "5a#[ The
velocity _elds for the two types of ~ows are shown in
Figs 1 and 2[

Fig[ 1[ Couette ~ow[
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Fig[ 2[ Poiseuille ~ow[

3[0[ Couette ~ow

Using the linear expression for Couette ~ow\ in which
the velocity is unidirectional "say in the x!direction#\ and
the boundary condition "2a#Ð"2b#\ we can obtain the
velocity distribution as]

u � U00−
z¦al

h¦1al1[ "6#

Substituting this velocity solution into the energy equa!
tion "1c# and integrating the result\ we obtain the tem!
perature distribution and then the heat transfer between
the upper plane and the air~ow by Fourier|s Law]

T � Td−
mU1

1k"h¦1al#1
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We can also write this heat transfer equation in a non!
dimensional form as]
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A similar expression to equation "8b# can also be found
in ð2Ł\ in which no detailed derivation is given[ Comparing
equation "8b# with equation "5b#\ we see that the second
term in the RHS of equation "5b# is the contribution
from the viscous dissipation by Couette ~ow[

3[1[ Poiseuille ~ow

The velocity _eld in the Poiseuille ~ow is also unidi!
rectional and can be obtained by integrating equation

"0a# and applying the boundary condition "2a#Ð"2b# with
U � 9[ The solution is]

u � −
0
1m

1p
1x

"alh¦hz−z1#[ "09#

In a similar way as used with the Couette ~ow\ we can
express the temperature distribution and the heat transfer
between the plane and the air~ow as]
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or in the non!dimensional form]
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Comparing equation "01b# with "5b#\ we see that the
third term in the RHS of "5b# is the contribution from
the viscous dissipation of Poiseuille ~ow[ Clearly\ the
fourth term is a combined contribution of both Couette
~ow and Poiseuille ~ow[

3[2[ Heat conduction

The _rst term in the RHS of equation "5b# is the
contribution of the heat conduction[ Due to the intro!
duction of the temperature jump at the boundary\ the
e}ect of the heat conduction is reduced by a factor of
"0¦1bl:h# compared to the continuum case[ Note that
because of the e}ect of viscous dissipation\ the heat trans!
fer between the slider and air bearing is not zero when
the temperature di}erence between the slider surface and
the disk surface vanishes[

4[ Simulation results

In this section\ we compute several cases for sliders
~ying close to the disk surface[ We assume that the slider
has a surface temperature either equal to that of the disk
or higher than that of the disk because of an electrical
current that goes through the MR transducer ð1Ł[ For
convenience\ we choose a 49) "1×0[5 mm# tri!pad slider
with taper length and angle of 9[1 mm and 9[90 rad\
respectively\ and with a recessed depth of 2 mm[ The
applied load is 2[4 g[ The slider is _xed at a radial position
r � 12 mm[ The rail shape of this slider is shown in Fig[
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3[ For each case in the analysis\ the Reynolds equation
is solved by using the CML Air Bearing Simulator ð01Ł[

4[0[ {Coolin`| effects of the air bearin`

In this case\ we choose the disk rotation speed
V � 5399 rpm[ The pressure distribution of the air bear!
ing is calculated and shown in Fig[ 4\ and the ~ying
characteristics are given in Table 0[ To calculate the heat
transfer from the slider to the air bearing\ we take
Ts � 290 K and Td � 299 K\ or DT � 0 K[ The heat ~ux
for each point is shown in Fig[ 5[ Note that positive
values mean that heat is transferred from the slider to the
air bearing[

It is seen that even at a small temperature di}erence
DT9 � 0 K\ the heat conduction still dominates the over!
all heat transfer and results in a net heat ~ux from the
slider to the air bearing\ except at some points around
the edges of end rail[ Figure 6 shows the simulation result
for DT9 � 9 K\ in which only viscous dissipation exists[
It is seen that the heat ~ux take negative values and has
a large magnitude at the corners of the end rail[ The
reason for this may be that the pressure at these points
has larger gradients "Fig[ 4#\ which makes the magnitude
of the heat ~ux increase sharply there "referring to equa!
tion "5b##[ To reduce the warming e}ects of the viscous
dissipation\ it is recommended to avoid putting the MR
sensor at the corners of the rails[

Comparing Fig[ 5 with Fig[ 6\ we conclude that the
viscous dissipation has a smaller magnitude than the heat
conduction\ except for when the temperature di}erence
is very close to zero[ Generally\ when the temperature

Fig[ 3[ The rail shape of the tri!pad slider[

di}erence is non!zero and the air bearing surface "rail
shape# is simple\ we can use only the _rst term of the
RHS of the equation "5a# to calculate the heat ~ux q in
an air bearing with reasonable accuracy[ But when the
temperature di}erence is zero "or close to zero# and the
air bearing surface is complicated\ we need to include the
viscous dissipation terms in calculating the heat ~ux[

4[1[ Effect of the ~yin` hei`ht and disk speed

From Fig[ 5 we see that heat ~ux shows di}erent values
in the air bearing and recessed region\ which implies that
the heat ~ux changes with the slider:disk interface "SDI#
spacing[ In the following cases\ we study the relation of
the heat ~ux to the CTE!FT hm[ Note that to change the
~ying height\ we have to change the disk rotation speed
if we keep the other parameters _xed[ Therefore\ the heat
~ux is actually a}ected by both the disk rotation speed
and the ~ying height[ Table 1 shows the related ~ying
characteristics for di}erent cases[ The results for heat ~ux
versus ~ying height for DT � 0 K and 9 K are shown in
Figs 7 and 8\ respectively[

The heat ~ux for DT � 0 K at a single point "4 mm
inside the CTE# as well as the average heat ~ux over
the surface of the end rail\ which is important for the
temperature variation of the MR transducer\ are both
plotted in Fig[ 7[ It is seen that both of them increases
with the decrease of the ~ying height under the given
temperature di}erence "Ts−Td � 0 K#[ This means that
more heat is transferred to the air bearing when the slider
~ies closer to the disk surface[

The same calculation results for DT � 9 K are plotted
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Fig[ 4[ The pressure pro_le in the air bearing of the tri!pad slider[

Table 0
Flying characteristics of the tri!pad slider

Disk rotation Pitch angle Roll CTE!FH�
ðrpmŁ ðmradŁ ðmradŁ ðnmŁ

5399 065 7 33

�Central trailing edge ~ying height[

Table 1
Flying characteristics of the tri!pad slider at di}erent rpm

Disk rotation Pitch angle Roll CTE!FH
ðrpmŁ ðmradŁ ðmradŁ ðnmŁ

3999 015[4 3[7 04[6
3499 028[9 4[3 19[9
4999 049[3 5[0 14[1
4499 059[9 5[6 21[0
5999 058[2 6[4 28[9
5499 065[8 7[1 36[1
6999 072[6 7[8 45[2
6499 078[3 8[7 55[3
7999 082[8 09[3 66[1
7499 086[2 00[3 77[4

in Fig[ 8\ in which negative value means that the heat is
transferred to the slider because of viscous dissipation[
As in Fig[ 7\ the heat ~ux for both the single point and the
averaged value over the surface of the end rail decrease in
magnitude with the decrease of the ~ying height[ In other
words\ if only viscous dissipation exists\ less heat will be
transferred to the slider when the slider ~ies closer to the
disk surface[ Combining this result with that for
DT � 0 K\ we can say that the {cooling| e}ect increases
with the decrease of the ~ying height[ This conclusion is
identical to the experimental result by Tian et al[ ð1Ł[
Since the ~ying height is proportional to the disk speed
"Table 1#\ we can also say that the {cooling| e}ect of the
air bearing increases with the decrease of the disk speed[

5[ Conclusion

In this paper\ we solve the NÐS and energy equations
with discontinuous boundary conditions to obtain the
heat transfer between the slider and the air bearing[ In
solving these equations\ we make an assumption that the
properties of the air remain constant across the air bear!
ing because the temperature variation is not signi_cant\
so we can decouple the NÐS equation and energy equa!
tion and integrate them separately[ The results show that
the heat transfer between the slider and air bearing
depends on both the heat conduction\ which transfers
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Fig[ 5[ Heat ~ux between the slider and air bearing at temperature di}erence Ts−Td � 0 K[

Fig[ 6[ Heat ~ux between the slider and air bearing at temperature di}erence Ts−Td � 9 K[

heat to the air bearing if the slider has a higher surface
temperature than the disk\ and viscous dissipation\ which
transfers heat to the slider[ In most cases the heat con!
duction dominates the heat transfer\ and therefore the

net result is that heat is transferred from the slider to
the air bearing[ Under this situation\ the air bearing is
regarded as a coolant[ But when the temperature di}er!
ence is nearly equal to zero\ viscous dissipation dominates
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Fig[ 7[ Heat ~ux vs central trailing edge ~ying height at temperature di}erence Ts−Td � 0 K[

Fig[ 8[ Heat ~ux vs central trailing edge ~ying height at temperature di}erence Ts−Td � 9 K[

the heat transfer and heat is transferred into the slider\
so the air bearing acts as a heater[ Since the magnitude
of the viscous dissipation is not large\ this heating e}ect
is not signi_cant[ Simulation results also show that the

heat conduction e}ect increases with the decrease of the
~ying height "or disk rotation speed#\ but the viscous
dissipation e}ect decreases with the decrease of the ~ying
height "or disk rotation speed#[ In other words\ the {cool!
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ing| e}ect increases with the decrease of the ~ying height
"or disk rotation speed#[
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